I ran wand.finish()
but it doesn’t seem to finish properly (e.g. not showing the links to my runs etc):
wandb: Waiting for W&B process to finish, PID 86593... (success).
InvalidVersionSpec: Invalid version '1<2': invalid character(s)
why is wandb not interacting well with pycharm?
or is it just taking time because it’s uploading artifacts?
script
#%%
"""
I think artifacts are used per run or something but I will just create one run upload of the zip of the data and
figs I made. Then create a report that links to the artifact run.
refs:
https://docs.wandb.ai/guides/artifacts
https://community.wandb.ai/t/how-does-one-manually-upload-a-single-artifact/841
failed artifact push: https://wandb.ai/brando/meta-learning-neurips-workshop/runs/221fe0xw
"""
from argparse import Namespace
from pathlib import Path
import wandb
import uutils
# uutils.setup_args_for_experiment() does the following:
# if hasattr(args, 'log_to_wandb'):
# if args.log_to_wandb:
# # os.environ['WANDB_MODE'] = 'offline'
# import wandb
#
# print(f'{wandb=}')
#
# # - set run name
# run_name = None
# # if in cluster use the cluster jobid
# if hasattr(args, 'jobid'):
# # if jobid is actually set to something, use that as the run name in ui
# if args.jobid is not None and args.jobid != -1 and str(args.jobid) != '-1':
# run_name: str = f'jobid={str(args.jobid)}'
# # if user gives run_name overwrite that always
# if hasattr(args, 'run_name'):
# run_name = args.run_name if args.run_name is not None else run_name
# args.run_name = run_name
# # - initialize wandb
# wandb.init(project=args.wandb_project,
# entity=args.wandb_entity,
# # job_type="job_type",
# name=run_name,
# group=args.experiment_name
# )
# wandb.config.update(args)
def get_args_for_experiment() -> Namespace:
# - get my default args
args = uutils.parse_basic_meta_learning_args()
args.log_to_wandb = False
args.log_to_wandb = True
args.wandb_project = 'meta-learning-neurips-workshop'
args.experiment_name = 'upload-of-zip-files-synthetic-data-set-all-figs-and-hps'
args.run_name = f'{args.experiment_name}_1'
args = uutils.setup_args_for_experiment(args)
return args
def get_zips_paths():
log_root: Path = Path('~/Desktop/').expanduser()
dataset_filename: str = 'dataset_LS_fully_connected_NN_with_BN_nb_tasks200_data_per_task1000_l_4_nb_h_layes3_out1_H15.zip'
all_figs_zip_filename: str = 'all_ckpts_and_figures.zip'
return log_root, dataset_filename, all_figs_zip_filename
# wandb.init(job_type="dataset-creation") # done in uutils.setup_args_for_experiment()
print('-- getting args')
args = get_args_for_experiment()
# https://docs.wandb.ai/ref/python/artifact for Artifact api
print('-- creating artifacts')
artifact_data = wandb.Artifact('dataset_LS_fully_connected_NN_with_BN_nb_tasks200_data_per_task1000_l_4_nb_h_layes3_out1_H15.zip', type='dataset-as-zip')
artifact_figs = wandb.Artifact('all_figs_for_paper', type='figs-as-zip')
# - get zip files to log as artifacts
print('-- getting path to zipz')
log_root, dataset_filename, all_figs_zip_filename = get_zips_paths()
# todo - Imagine more lines of text were added to this text file: (what does this mean?)
print('-- wandb artifact logging1 (artifact_data.add_file)')
# artifact.add_file('my-dataset.txt')
artifact_data.add_file(log_root / dataset_filename)
artifact_figs.add_file(log_root / all_figs_zip_filename)
# Log that artifact, and we identify the changed file
print('-- wandb artifact logging2 (wandb.log_artifact)')
wandb.log_artifact(artifact_data)
wandb.log_artifact(artifact_figs)
# todo - Now you have a new version of the artifact, tracked in W&B (don't get it)
# - wandb
if args.log_to_wandb:
print('-- finishing wandb')
wandb.finish()
print('-- wandb finished')
print('Done!\a')
smallish files ~200mb ~100mb