Hi all,
I want to use sweeps to find best architecutre for image classification. My model look like this :
self.cb1 = conv_block(3,wandb.config.cb1,kernel_size=3,stride=2)
self.cb2 = conv_block(wandb.config.cb1,wandb.config.cb2,kernel_size=3,stride=2)
self.cb3 = conv_block(wandb.config.cb2,wandb.config.cb3,kernel_size=3,stride=2)
self.cb4 = conv_block(wandb.config.cb3,wandb.config.cb4,kernel_size=3,stride=2)
self.cb5 = conv_block(wandb.config.cb4,wandb.config.cb5,kernel_size=3,stride=2)
self.cb6 = conv_block(wandb.config.cb5,wandb.config.cb6,kernel_size=3,stride=2)
self.lin1 = nn.Linear(12800,256)
cb1:
values: [16,32,64]
cb2:
values: [32,64,96]
cb3:
values: [64,96,160]
cb4:
values: [96,160,256]
cb5:
values: [160,256,416]
cb6:
values: [256,384,512]
How can I found value for linear layer after convolutions layers ? It will be all time different ? Is there some trick for this? Is this how you are looking for best architecture ?
Miro