I am receiving this (new?) error in running a bayesian sweep:
400 response executing GraphQL.
{"errors":[{"message":"None is not a permitted value of the categorical hyperparameter algo.train_config.
loss.weight in the current sweep.","path":["agentHeartbeat"]}],"data":{"agentHeartbeat":null}}
wandb: ERROR Error while calling W&B API: None is not a permitted value of the categorical hyperparameter
algo.train_config.loss.weight in the current sweep. (<Response [400]>)
As far as I can tell, this sweep has successfully launched runs with algo.train_config.loss.weight=None
previously. I can link to them if desired.
Here is the config of the sweep:
command:
- /home/ahalev/miniconda3/envs/eye-image-env/bin/python
- ${program}
- ${args}
method: bayes
metric:
goal: maximize
name: Evaluate/EMA/balanced_accuracy_T-T_best
target: 1
parameters:
algo.model.architecture:
distribution: categorical
values:
- inception_v3
- vit_base_patch16_224
- inception_resnet_v2
- retfound_vit
algo.train_config.loss.weight:
distribution: categorical
values:
- null
- reciprocal
- reciprocal_squared
algo.train_config.optimizer.lr:
distribution: log_uniform_values
max: 0.01
min: 1e-06
algo.train_config.optimizer.opt:
distribution: categorical
values:
- sgd
- adamw
algo.train_config.optimizer.weight_decay:
distribution: log_uniform_values
max: 0.001
min: 1e-09
algo.train_config.scheduler.type:
distribution: categorical
values:
- cosine
- cyclic_triangular
- cyclic_triangular2
- cyclic_exp_range
algo.train_config.train_layers:
distribution: categorical
values:
- all
- 2
- 0.5
dataset.images.train.eye:
value: both
dataset.images.train.side:
value: both
dataset.retinal_genotype.gene:
value: arms2
preprocess.add_gaussian_noise_sigma:
distribution: uniform
max: 1
min: 0
preprocess.gaussian_laplace_sigma:
distribution: uniform
max: 1
min: 0
preprocess.random_flip_probability.horizontal:
distribution: categorical
values:
- 0
- 0.5
preprocess.random_flip_probability.vertical:
distribution: categorical
values:
- 0
- 0.5
preprocess.resize_crop.ratio:
distribution: categorical
values:
- - 0
- - 0.75
- 1.33
preprocess.resize_crop.scale:
distribution: categorical
values:
- - 0
- - 0.6
- 1
project:
value: retinal_genotype
program: ../trainer.py
project: retinal_genotype
Any assistance would be appreciated.