debug.log
2024-02-22 15:13:48,582 INFO MainThread:39 [wandb_setup.py:_flush():76] Current SDK version is 0.16.0
2024-02-22 15:13:48,582 INFO MainThread:39 [wandb_setup.py:_flush():76] Configure stats pid to 39
2024-02-22 15:13:48,582 INFO MainThread:39 [wandb_setup.py:_flush():76] Loading settings from /home//a21blura/.config/wandb/settings
2024-02-22 15:13:48,582 INFO MainThread:39 [wandb_setup.py:_flush():76] Loading settings from /workspace/Pointcept/wandb/settings
2024-02-22 15:13:48,582 INFO MainThread:39 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
2024-02-22 15:13:48,582 INFO MainThread:39 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
2024-02-22 15:13:48,582 INFO MainThread:39 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': 'exp/rohbau3d/multi-r3-s3/code/tools/train.py', 'program_abspath': '/workspace/Pointcept/exp/rohbau3d/multi-r3-s3/code/tools/train.py', 'program': '/workspace/Pointcept/exp/rohbau3d/multi-r3-s3/code/tools/train.py'}
2024-02-22 15:13:48,582 INFO MainThread:39 [wandb_init.py:_log_setup():524] Logging user logs to /workspace/Pointcept/wandb/run-20240222_151348-v7bgm46o/logs/debug.log
2024-02-22 15:13:48,583 INFO MainThread:39 [wandb_init.py:_log_setup():525] Logging internal logs to /workspace/Pointcept/wandb/run-20240222_151348-v7bgm46o/logs/debug-internal.log
2024-02-22 15:13:48,583 INFO MainThread:39 [wandb_init.py:init():564] calling init triggers
2024-02-22 15:13:48,583 INFO MainThread:39 [wandb_init.py:init():571] wandb.init called with sweep_config: {}
config: {'_cfg_dict': {'weight': None, 'resume': False, 'evaluate': True, 'test_only': False, 'seed': 45251091, 'save_path': 'exp/rohbau3d/multi-r3-s3', 'num_worker': 24, 'batch_size': 16, 'batch_size_val': None, 'batch_size_test': None, 'epoch': 20, 'eval_epoch': 10, 'sync_bn': False, 'enable_amp': True, 'empty_cache': False, 'find_unused_parameters': True, 'mix_prob': 0.8, 'param_dicts': None, 'hooks': [{'type': 'CheckpointLoader'}, {'type': 'IterationTimer', 'warmup_iter': 2}, {'type': 'InformationWriter'}, {'type': 'SemSegEvaluator'}, {'type': 'CheckpointSaver', 'save_freq': None}, {'type': 'PreciseEvaluator', 'test_last': False}], 'train': {'type': 'MultiDatasetTrainer'}, 'test': {'type': 'SemSegTester', 'verbose': True}, 'model': {'type': 'PPT-v1m1', 'backbone': {'type': 'SpUNet-v1m3', 'in_channels': 6, 'num_classes': 0, 'base_channels': 32, 'context_channels': 256, 'channels': (32, 64, 128, 256, 256, 128, 96, 96), 'layers': (2, 3, 4, 6, 2, 2, 2, 2), 'cls_mode': False, 'conditions': ('Rohbau3D', 'S3DIS'), 'zero_init': False, 'norm_decouple': True, 'norm_adaptive': True, 'norm_affine': True}, 'criteria': [{'type': 'CrossEntropyLoss', 'loss_weight': 1.0, 'ignore_index': -1}], 'backbone_out_channels': 96, 'context_channels': 256, 'conditions': ('S3DIS', 'Rohbau3D'), 'template': '[x]', 'clip_model': 'ViT-B/16', 'class_name': ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter', 'stairs', 'equipment', 'installation'), 'valid_index': ((0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), (0, 1, 2, 3, 4, 5, 6, 12, 13, 14, 15)), 'backbone_mode': False}, 'optimizer': {'type': 'SGD', 'lr': 0.05, 'momentum': 0.9, 'weight_decay': 0.0001, 'nesterov': True}, 'scheduler': {'type': 'OneCycleLR', 'max_lr': 0.05, 'pct_start': 0.05, 'anneal_strategy': 'cos', 'div_factor': 10.0, 'final_div_factor': 10000.0}, 'data': {'num_classes': 11, 'ignore_index': -1, 'names': ['clutter', 'ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'stairs', 'equipment', 'installation'], 'train': {'type': 'ConcatDataset', 'datasets': [{'type': 'S3DISDataset', 'split': ('Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_5', 'Area_6'), 'data_root': '../data/s3dis', 'transform': [{'type': 'CenterShift', 'apply_z': True}, {'type': 'RandomScale', 'scale': [0.9, 1.1]}, {'type': 'RandomFlip', 'p': 0.5}, {'type': 'RandomJitter', 'sigma': 0.005, 'clip': 0.02}, {'type': 'ChromaticAutoContrast', 'p': 0.2, 'blend_factor': None}, {'type': 'ChromaticTranslation', 'p': 0.95, 'ratio': 0.05}, {'type': 'ChromaticJitter', 'p': 0.95, 'std': 0.05}, {'type': 'GridSample', 'grid_size': 0.04, 'hash_type': 'fnv', 'mode': 'train', 'keys': ('coord', 'color', 'segment'), 'return_grid_coord': True}, {'type': 'SphereCrop', 'point_max': 80000, 'mode': 'random'}, {'type': 'CenterShift', 'apply_z': False}, {'type': 'NormalizeColor'}, {'type': 'ShufflePoint'}, {'type': 'Add', 'keys_dict': {'condition': 'S3DIS'}}, {'type': 'ToTensor'}, {'type': 'Collect', 'keys': ('coord', 'grid_coord', 'segment', 'condition'), 'feat_keys': ('coord', 'color')}], 'test_mode': False, 'loop': 1}, {'type': 'Rohbau3DDataset', 'split': 'train', 'data_root': '../data/rohbau3d', 'transform': [{'type': 'CenterShift', 'apply_z': True}, {'type': 'RandomScale', 'scale': [0.9, 1.1]}, {'type': 'RandomFlip', 'p': 0.5}, {'type': 'RandomJitter', 'sigma': 0.005, 'clip': 0.02}, {'type': 'ChromaticAutoContrast', 'p': 0.2, 'blend_factor': None}, {'type': 'ChromaticTranslation', 'p': 0.95, 'ratio': 0.05}, {'type': 'ChromaticJitter', 'p': 0.95, 'std': 0.05}, {'type': 'GridSample', 'grid_size': 0.04, 'hash_type': 'fnv', 'mode': 'train', 'keys': ('coord', 'color', 'segment'), 'return_grid_coord': True}, {'type': 'SphereCrop', 'point_max': 80000, 'mode': 'random'}, {'type': 'CenterShift', 'apply_z': False}, {'type': 'NormalizeColor'}, {'type': 'ShufflePoint'}, {'type': 'Add', 'keys_dict': {'condition': 'Rohbau3D'}}, {'type': 'ToTensor'}, {'type': 'Collect', 'keys': ('coord', 'grid_coord', 'segment', 'condition'), 'feat_keys': ('coord', 'color')}], 'test_mode': False, 'loop': 1}], 'loop': 2}, 'val': {'type': 'Rohbau3DDataset', 'split': 'val', 'data_root': '../data/rohbau3d', 'transform': [{'type': 'CenterShift', 'apply_z': True}, {'type': 'GridSample', 'grid_size': 0.0333, 'hash_type': 'fnv', 'mode': 'train', 'keys': ('coord', 'color', 'segment'), 'return_grid_coord': True}, {'type': 'CenterShift', 'apply_z': False}, {'type': 'NormalizeColor'}, {'type': 'ToTensor'}, {'type': 'Add', 'keys_dict': {'condition': 'Rohbau3D'}}, {'type': 'Collect', 'keys': ('coord', 'grid_coord', 'segment', 'condition'), 'feat_keys': ('coord', 'color')}], 'test_mode': False}, 'test': {'type': 'Rohbau3DDataset', 'split': 'test', 'data_root': '../data/rohbau3d', 'transform': [{'type': 'CenterShift', 'apply_z': True}, {'type': 'NormalizeColor'}], 'test_mode': True, 'test_cfg': {'voxelize': {'type': 'GridSample', 'grid_size': 0.0333, 'hash_type': 'fnv', 'mode': 'test', 'keys': ('coord', 'color', 'segment'), 'return_grid_coord': True}, 'crop': None, 'post_transform': [{'type': 'CenterShift', 'apply_z': False}, {'type': 'Add', 'keys_dict': {'condition': 'Rohbau3D'}}, {'type': 'ToTensor'}, {'type': 'Collect', 'keys': ('coord', 'grid_coord', 'index', 'condition'), 'feat_keys': ('coord', 'color')}], 'aug_transform': [[{'type': 'RandomRotateTargetAngle', 'angle': [0], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}], [{'type': 'RandomRotateTargetAngle', 'angle': [0.5], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}], [{'type': 'RandomRotateTargetAngle', 'angle': [1], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}], [{'type': 'RandomRotateTargetAngle', 'angle': [1.5], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}], [{'type': 'RandomRotateTargetAngle', 'angle': [0], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}, {'type': 'RandomScale', 'scale': [0.95, 0.95]}], [{'type': 'RandomRotateTargetAngle', 'angle': [0.5], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}, {'type': 'RandomScale', 'scale': [0.95, 0.95]}], [{'type': 'RandomRotateTargetAngle', 'angle': [1], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}, {'type': 'RandomScale', 'scale': [0.95, 0.95]}], [{'type': 'RandomRotateTargetAngle', 'angle': [1.5], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}, {'type': 'RandomScale', 'scale': [0.95, 0.95]}], [{'type': 'RandomRotateTargetAngle', 'angle': [0], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}, {'type': 'RandomScale', 'scale': [1.05, 1.05]}], [{'type': 'RandomRotateTargetAngle', 'angle': [0.5], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}, {'type': 'RandomScale', 'scale': [1.05, 1.05]}], [{'type': 'RandomRotateTargetAngle', 'angle': [1], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}, {'type': 'RandomScale', 'scale': [1.05, 1.05]}], [{'type': 'RandomRotateTargetAngle', 'angle': [1.5], 'axis': 'z', 'center': [0, 0, 0], 'p': 1}, {'type': 'RandomScale', 'scale': [1.05, 1.05]}], [{'type': 'RandomFlip', 'p': 1}]]}}}}, '_filename': 'configs/rohbau3d/semseg-multi-r3-s3.py', '_text': '/workspace/Pointcept/configs/_base_/default_runtime.py\nweight = None # path to model weight\nresume = False # whether to resume training process\nevaluate = True # evaluate after each epoch training process\ntest_only = False # test process\n\nseed = None # train process will init a random seed and record\nsave_path = "exp/default"\nnum_worker = 16 # total worker in all gpu\nbatch_size = 16 # total batch size in all gpu\nbatch_size_val = None # auto adapt to bs 1 for each gpu\nbatch_size_test = None # auto adapt to bs 1 for each gpu\nepoch = 100 # total epoch, data loop = epoch // eval_epoch\neval_epoch = 100 # sche total eval & checkpoint epoch\n\nsync_bn = False\nenable_amp = False\nempty_cache = False\nfind_unused_parameters = False\n\nmix_prob = 0\nparam_dicts = None # example: param_dicts = [dict(keyword="block", lr_scale=0.1)]\n\n# hook\nhooks = [\n dict(type="CheckpointLoader"),\n dict(type="IterationTimer", warmup_iter=2),\n dict(type="InformationWriter"),\n dict(type="SemSegEvaluator"),\n dict(type="CheckpointSaver", save_freq=None),\n dict(type="PreciseEvaluator", test_last=False),\n]\n\n# Trainer\ntrain = dict(type="DefaultTrainer")\n\n# Tester\ntest = dict(type="SemSegTester", verbose=True)\n\n/workspace/Pointcept/configs/rohbau3d/semseg-multi-r3-s3.py\n_base_ = ["../_base_/default_runtime.py"]\n\n# wandb \nwandb = dict(\n track = True,\n project = "RB3D multi",\n notes = "RUN XXXXX",\n tags = [],\n)\n\n# misc custom setting\nbatch_size = 16 # bs: total bs in all gpus\nnum_worker = 24\nmix_prob = 0.8\nempty_cache = False\nenable_amp = True\nfind_unused_parameters = True\n\n# trainer\ntrain = dict(\n type="MultiDatasetTrainer",\n)\n\n# model settings\nmodel = dict(\n type="PPT-v1m1",\n backbone=dict(\n type="SpUNet-v1m3",\n in_channels=6,\n num_classes=0,\n base_channels=32,\n context_channels=256,\n channels=(32, 64, 128, 256, 256, 128, 96, 96),\n layers=(2, 3, 4, 6, 2, 2, 2, 2),\n cls_mode=False,\n conditions=( "Rohbau3D", "S3DIS"),\n zero_init=False,\n norm_decouple=True,\n norm_adaptive=True,\n norm_affine=True,\n ),\n criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1)],\n backbone_out_channels=96,\n context_channels=256,\n conditions=("S3DIS", "Rohbau3D"),\n template="[x]",\n clip_model="ViT-B/16",\n class_name=(\'ceiling\', \'floor\', \'wall\', \'beam\', \'column\', \'window\', \'door\', \'table\', \'chair\', \'sofa\', \'bookcase\', \'board\', \'clutter\', \'stairs\', \'equipment\', \'installation\'),\n valid_index=(\n (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),\n (0, 1, 2, 3, 4, 5, 6, 12, 13, 14, 15)\n ),\n backbone_mode=False,\n)\n\n# scheduler settings\nepoch = 20\neval_epoch = 10\noptimizer = dict(type="SGD", lr=0.05, momentum=0.9, weight_decay=0.0001, nesterov=True)\nscheduler = dict(\n type="OneCycleLR",\n max_lr=optimizer["lr"],\n pct_start=0.05,\n anneal_strategy="cos",\n div_factor=10.0,\n final_div_factor=10000.0,\n)\n# param_dicts = [dict(keyword="modulation", lr=0.005)]\n\n\n# dataset settings\ndata = dict(\n num_classes=11,\n ignore_index=-1,\n names=[\n \'clutter\',\n \'ceiling\',\n \'floor\',\n \'wall\',\n \'beam\',\n \'column\',\n \'window\',\n \'door\',\n \'stairs\',\n \'equipment\',\n \'installation\',\n ],\n train=dict(\n type="ConcatDataset",\n datasets=[\n # S3DIS\n dict(\n type="S3DISDataset",\n split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_5", "Area_6"),\n data_root="../data/s3dis",\n transform=[\n dict(type="CenterShift", apply_z=True),\n # dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),\n # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),\n # dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),\n # dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),\n # dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),\n dict(type="RandomScale", scale=[0.9, 1.1]),\n # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),\n dict(type="RandomFlip", p=0.5),\n dict(type="RandomJitter", sigma=0.005, clip=0.02),\n # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),\n dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),\n dict(type="ChromaticTranslation", p=0.95, ratio=0.05),\n dict(type="ChromaticJitter", p=0.95, std=0.05),\n # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),\n # dict(type="RandomColorDrop", p=0.2, color_augment=0.0),\n dict(\n type="GridSample",\n grid_size=0.04,\n hash_type="fnv",\n mode="train",\n keys=("coord", "color", "segment"),\n return_grid_coord=True,\n ),\n dict(type="SphereCrop", point_max=80000, mode="random"),\n dict(type="CenterShift", apply_z=False),\n dict(type="NormalizeColor"),\n dict(type="ShufflePoint"),\n dict(type="Add", keys_dict={"condition": "S3DIS"}),\n dict(type="ToTensor"),\n dict(\n type="Collect",\n keys=("coord", "grid_coord", "segment", "condition"),\n feat_keys=("coord", "color"),\n ),\n ],\n test_mode=False,\n loop=1, # sampling weight\n ),\n # Rohbau3D\n dict(\n type="Rohbau3DDataset",\n split="train",\n data_root="../data/rohbau3d",\n transform=[\n dict(type="CenterShift", apply_z=True),\n # dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),\n # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),\n # dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),\n # dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),\n # dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),\n dict(type="RandomScale", scale=[0.9, 1.1]),\n # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),\n dict(type="RandomFlip", p=0.5),\n dict(type="RandomJitter", sigma=0.005, clip=0.02),\n # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),\n dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),\n dict(type="ChromaticTranslation", p=0.95, ratio=0.05),\n dict(type="ChromaticJitter", p=0.95, std=0.05),\n # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),\n # dict(type="RandomColorDrop", p=0.2, color_augment=0.0),\n dict(\n type="GridSample",\n grid_size=0.04,\n hash_type="fnv",\n mode="train",\n keys=("coord", "color", "segment"),\n return_grid_coord=True,\n ),\n dict(type="SphereCrop", point_max=80000, mode="random"),\n dict(type="CenterShift", apply_z=False),\n dict(type="NormalizeColor"),\n dict(type="ShufflePoint"),\n dict(type="Add", keys_dict={"condition": "Rohbau3D"}),\n dict(type="ToTensor"),\n dict(\n type="Collect",\n keys=("coord", "grid_coord", "segment", "condition"),\n feat_keys=("coord", "color"),\n ),\n ],\n test_mode=False,\n loop=1, # sampling weight\n ),\n ],\n ),\n val=dict(\n type="Rohbau3DDataset",\n split="val",\n data_root="../data/rohbau3d",\n transform=[\n dict(type="CenterShift", apply_z=True),\n dict(\n type="GridSample",\n grid_size=0.0333,\n hash_type="fnv",\n mode="train",\n keys=("coord", "color", "segment"),\n return_grid_coord=True,\n ),\n # dict(type="SphereCrop", point_max=1000000, mode="center"),\n dict(type="CenterShift", apply_z=False),\n dict(type="NormalizeColor"),\n dict(type="ToTensor"),\n dict(type="Add", keys_dict={"condition": "Rohbau3D"}),\n dict(\n type="Collect",\n keys=("coord", "grid_coord", "segment", "condition"),\n feat_keys=("coord", "color"),\n ),\n ],\n test_mode=False,\n ),\n test=dict(\n type="Rohbau3DDataset",\n split="test",\n data_root="../data/rohbau3d",\n transform=[\n dict(type="CenterShift", apply_z=True),\n dict(type="NormalizeColor"),\n ],\n test_mode=True,\n test_cfg=dict(\n voxelize=dict(\n type="GridSample",\n grid_size=0.0333,\n hash_type="fnv",\n mode="test",\n keys=("coord", "color", "segment"),\n return_grid_coord=True,\n ),\n crop=None,\n post_transform=[\n dict(type="CenterShift", apply_z=False),\n dict(type="Add", keys_dict={"condition": "Rohbau3D"}),\n dict(type="ToTensor"),\n dict(\n type="Collect",\n keys=("coord", "grid_coord", "index", "condition"),\n feat_keys=("coord", "color"),\n ),\n ],\n aug_transform=[\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[0],\n axis="z",\n center=[0, 0, 0],\n p=1,\n )\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[1 / 2],\n axis="z",\n center=[0, 0, 0],\n p=1,\n )\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[1],\n axis="z",\n center=[0, 0, 0],\n p=1,\n )\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[3 / 2],\n axis="z",\n center=[0, 0, 0],\n p=1,\n )\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[0],\n axis="z",\n center=[0, 0, 0],\n p=1,\n ),\n dict(type="RandomScale", scale=[0.95, 0.95]),\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[1 / 2],\n axis="z",\n center=[0, 0, 0],\n p=1,\n ),\n dict(type="RandomScale", scale=[0.95, 0.95]),\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[1],\n axis="z",\n center=[0, 0, 0],\n p=1,\n ),\n dict(type="RandomScale", scale=[0.95, 0.95]),\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[3 / 2],\n axis="z",\n center=[0, 0, 0],\n p=1,\n ),\n dict(type="RandomScale", scale=[0.95, 0.95]),\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[0],\n axis="z",\n center=[0, 0, 0],\n p=1,\n ),\n dict(type="RandomScale", scale=[1.05, 1.05]),\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[1 / 2],\n axis="z",\n center=[0, 0, 0],\n p=1,\n ),\n dict(type="RandomScale", scale=[1.05, 1.05]),\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[1],\n axis="z",\n center=[0, 0, 0],\n p=1,\n ),\n dict(type="RandomScale", scale=[1.05, 1.05]),\n ],\n [\n dict(\n type="RandomRotateTargetAngle",\n angle=[3 / 2],\n axis="z",\n center=[0, 0, 0],\n p=1,\n ),\n dict(type="RandomScale", scale=[1.05, 1.05]),\n ],\n [dict(type="RandomFlip", p=1)],\n ],\n ),\n ),\n)\n'}
2024-02-22 15:13:48,587 INFO MainThread:39 [wandb_init.py:init():614] starting backend
2024-02-22 15:13:48,587 INFO MainThread:39 [wandb_init.py:init():618] setting up manager
2024-02-22 15:13:48,589 INFO MainThread:39 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
2024-02-22 15:13:48,590 INFO MainThread:39 [wandb_init.py:init():624] backend started and connected
2024-02-22 15:13:48,598 INFO MainThread:39 [wandb_init.py:init():716] updated telemetry
2024-02-22 15:13:48,598 INFO MainThread:39 [wandb_init.py:init():749] communicating run to backend with 90.0 second timeout
2024-02-22 15:13:49,187 INFO MainThread:39 [wandb_run.py:_on_init():2254] communicating current version
2024-02-22 15:13:49,267 INFO MainThread:39 [wandb_run.py:_on_init():2263] got version response upgrade_message: "wandb version 0.16.3 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
2024-02-22 15:13:49,267 INFO MainThread:39 [wandb_init.py:init():800] starting run threads in backend
2024-02-22 15:14:07,905 INFO MainThread:39 [wandb_run.py:_console_start():2233] atexit reg
2024-02-22 15:14:07,905 INFO MainThread:39 [wandb_run.py:_redirect():2088] redirect: wrap_raw
2024-02-22 15:14:07,906 INFO MainThread:39 [wandb_run.py:_redirect():2153] Wrapping output streams.
2024-02-22 15:14:07,906 INFO MainThread:39 [wandb_run.py:_redirect():2178] Redirects installed.
2024-02-22 15:14:07,906 INFO MainThread:39 [wandb_init.py:init():841] run started, returning control to user process