I found the solution here : Multi-level nesting in yaml for sweeps
and I used the ${args_json_file} as parameter
So the resulting file look like :
program: training.py
method: grid
metric:
goal: minimize
name: val/loss.min
parameters:
seed_everything:
distribution: int_uniform
max: 10
min: 0
model.class_path:
value: models.zoo.LitGCN
model.init_args.hidden_channels:
values: [32, 64, 128, 256]
model.init_args.gcn_num_layer:
distribution: int_uniform
min: 1
max: 8
model.init_args.mlp_num_layer:
distribution: int_uniform
min: 1
max: 8
model.init_args.dropout:
values: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
model.init_args.learning_rate:
values: [0.0001, 0.001, 0.01, 0.1]
command:
- .venv/bin/python
- ${program}
- fit
- -c
- ${args_json_file}
- -c=configs/data/sulcalgraphs_32_all-features.yaml
- -c=configs/trainers/usual.yaml
- -c=configs/lr_scheduler/reduce_on_plateau.yaml